Nitric oxide and carbon monoxide activate locus coeruleus neurons through a cGMP-dependent protein kinase: involvement of a nonselective cationic channel.

نویسندگان

  • J Pineda
  • J H Kogan
  • G K Aghajanian
چکیده

Nitric oxide (NO) and carbon monoxide (CO) have been identified as two diffusible signaling messengers in the brain, capable of stimulating soluble guanylate cyclase. Locus coeruleus (LC) is rich in the alpha 1 and beta 1 subunits of soluble guanylate cyclase. Therefore, the possible role of the cGMP pathway in the regulation of LC neurons was investigated with electrophysiological techniques in rat brain slices. Bath application of various NO donors or CO-containing solutions increased the firing rate of most LC neurons. This activation was reversed by the NO scavenger hemoglobin, but not by methemoglobin. Bath or intracellular application of selective activators of cGMP-dependent protein kinase also caused increases in LC cell firing rate. The actions of NO donors and kinase activators were mutually occlusive and reversed by H8, an inhibitor of the cGMP-dependent protein kinase. Hemoglobin and H8 reduced the firing rate of LC neurons, but no change was found with inhibitors or activators of the NO synthase. In intracellular and whole-cell recordings, NO effect was associated with an inward current and an increase in the input conductance (mean reversal potential = -27 mV); these effects were abolished using a low-sodium buffer. Spontaneous EPSCs of LC cells were not modified with the NO donor administration. Taken together, these data suggest that NO and CO activate noradrenergic neurons of LC via a cGMP-dependent protein kinase and a nonselective cationic channel. It also is proposed that these effects occur at the postsynaptic level and that there may be a tonic regulation of LC neuronal firing by the cGMP pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

cGMP produced by NO-sensitive guanylyl cyclase essentially contributes to inflammatory and neuropathic pain by using targets different from cGMP-dependent protein kinase I.

A large body of evidence indicates that the release of nitric oxide (NO) is crucial for the central sensitization of pain pathways during both inflammatory and neuropathic pain. Here, we investigated the distribution of NO-sensitive guanylyl cyclase (NO-GC) in the spinal cord and in dorsal root ganglia, and we characterized the nociceptive behavior of mice deficient in NO-GC (GC-KO mice). We sh...

متن کامل

Carbon monoxide stimulates Ca2+ -dependent big-conductance K channels in the cortical collecting duct.

We used the patch-clamp technique to examine the role of carbon monoxide (CO) in regulating Ca(2+)-activated big-conductance K (BK) channels in the principal cell of the cortical collecting duct (CCD). Application of CORM3 or CORM2, a CO donor, activated BK channels in the CCD, whereas adding inactivated CORM2/3 had no effect. Superfusion of the CCD with CO-bubbled bath solution also activated ...

متن کامل

Effect of chronic morphine administration on Ca2+/Calmodulin-Dependent protein kinase IIα activity in rat locus coeruleus and its possible role in morphine dependency

Introduction: The aim of this study was to assess the effect of Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) inhibitor (KN-93) injection into the locus coeruleus (LC) on the modulation of withdrawal signs. We also sought to study the effect of chronic morphine administration on CaMKIIα activity in the rat LC. Methods: The research was based on behavioral and molecular studies. In the behav...

متن کامل

Hydrogen sulfide and endothelium-dependent vasorelaxation.

In addition to nitric oxide and carbon monoxide, hydrogen sulfide (H2S), synthesized enzymatically from l-cysteine or l-homocysteine, is the third gasotransmitter in mammals. Endogenous H2S is involved in the regulation of many physiological processes, including vascular tone. Although initially it was suggested that in the vascular wall H2S is synthesized only by smooth muscle cells and relaxe...

متن کامل

YC-1 potentiates nitric oxide- and carbon monoxide-induced cyclic GMP effects in human platelets.

Nitric oxide (NO), the physiological activator of soluble guanylyl cyclase (sGC), induces inhibitory effects on platelet activation via elevation of cGMP levels and stimulation of the cGMP-dependent protein kinase. YC-1, a benzylindazole derivative, was shown to activate sGC in intact platelets, resulting in inhibition of platelet aggregation. In a previous study, we demonstrated that YC-1 not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 1996